A pointfree version of remainder preservation

نویسندگان

  • Inderasan Naidoo Department of Mathematical Sciences, University of South Africa, P.O. Box 392, 0003 Unisa, South Africa.
  • Themba Dube Department of Mathematical Sciences, University of South Africa, P.O. Box 392, 0003 Unisa, South Africa.
چکیده مقاله:

Recall that a continuous function $fcolon Xto Y$ between Tychonoff spaces is proper if and only if the Stone extension $f^{beta}colon beta Xtobeta Y$ takes remainder to remainder, in the sense that $f^{beta}[beta X-X]subseteq beta Y-Y$. We introduce the notion of ``taking remainder to remainder" to frames, and, using it, we define a frame homomorphism $hcolon Lto M$ to be $beta$-proper, $lambda$-proper or $upsilon$-proper in case the lifted homomorphism $h^{beta}colonbeta Ltobeta M$, $h^{lambda}colonlambda Ltolambda M$ or $h^{upsilon}colonupsilon Ltoupsilon M$ takes remainder to remainder. These turn out to be weaker forms of properness. Indeed, every proper homomorphism is $beta$-proper, every $beta$-proper homomorphism is $lambda$-proper, and $lambda$-properness is equivalent to $upsilon$-properness. A characterization of $beta$-proper maps in terms of pointfree rings of continuous functions is that they are precisely those whose induced ring homomorphisms contract free maximal ideals to free prime ideals.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

Pointfree Spectra of Riesz Spaces

One of the best ways of studying ordered algebraic structures is through their spectra. The three well-known spectra usually considered are the Brumfiel, Keimel, and the maximal spectra. The pointfree versions of these spectra were studied by B. Banaschewski for f -rings. Here, we give the pointfree versions of the Keimel and the maximal spectra for Riesz spaces. Moreover, we briefly mention ho...

متن کامل

Pointfree Pseudocompactness Revisited

We give several internal and external characterizations of pseudocompactness in frames which extend (and transcend) analogous characterizations in topological spaces. In the case of internal characterizations we do not make reference (explicitly or implicitly) to the reals.

متن کامل

Pointfree Factorization of Operation Refinement

The standard operation refinement ordering is a kind of “meet of opposites”: non-determinism reduction suggests “smaller” behaviour while increase of definition suggests “larger” behaviour. Groves’ factorization of this ordering into two simpler relations, one per refinement concern, makes it more mathematically tractable but is far from fully exploited in the literature. We present a pointfree...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

A machine assisted formalization of pointfree topology in type theory

We will present a formalization of pointfree topology in Martin-Löf's type theory. A notion of point will be introduced and we will show that the points of a Scott topology form a Scott domain. This work follows closely the intuitionistic approach to pointfree topology and domain theory, developed mainly by Martin-Löf and Sambin. The important di erence is that the de nitions and proofs are mac...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 1

صفحات  27- 58

تاریخ انتشار 2013-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023